298
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Priest, H. D., Fox, S. E., Rowley, E. R., Murray, J. R., Michael, T. P., & Mockler, T. C., (2014).
Analysis of global gene expression in Brachypodium distachyon reveals extensive network
plasticity in response to abiotic stress. PLoS One, 9(1), e87499. https://doi.org/10.1371/
journal.pone.0087499.
Qiu, Q., Ma, T., Hu, Q., Liu, B., Wu, Y., Zhou, H., Wang, Q., et al., (2011). Genome-scale
transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiology, 31(4),
452–461. https://doi.org/10.1093/treephys/tpr015.
Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P., (2002).
microRNAs in plants. Genes & Development, 16(13), 1616–1626. https://doi.org/10.1101/
gad.1004402.
Ritchie, W., Theodule, F. X., & Gautheret, D., (2008). Mireval: A web tool for simple
microRNA prediction in genome sequences. Bioinformatics, 24(11), 1394–1396. https://
doi.org/10.1093/bioinformatics/btn137.
Rusinov, V., Baev, V., Minkov, I. N., & Tabler, M., (2005). MicroInspector: A web tool
for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Research,
33(suppl_2), W696–W700. https://doi.org/10.1093/nar/gki364.
Sahu, P. P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., & Prasad, M., (2013).
Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Reports, 32(8),
1151–1159. https://doi.org/10.1007/s00299-013-1462-x.
Sanan-Mishra, N., Jailani, A. A. K., Mandal, B., & Mukherjee, S. K., (2021). Secondary
siRNAs in plants: Biosynthesis, various functions, and applications in virology. Frontiers
in Plant Science, 12, 610283. https://doi.org/10.3389/fpls.2021.610283.
Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G., (2006). TarBase: A comprehensive database
of experimentally supported animal microRNA targets. RNA, 12(2), 192–197. https://doi.
org/10.1261/rna.2239606.
Shah, J. K., Garner, H. R., White, M. A., Shames, D. S., & Minna, J. D., (2007). sIR:
siRNA information resource, a web-based tool for siRNA sequence design and analysis
and an open access siRNA database. BMC Bioinformatics, 8, 178. https://doi.org/
10.1186/1471-2105-8-178.
Sharma, N., Tripathi, A., & Sanan-Mishra, N., (2015). Profiling the expression domains
of a rice-specific microRNA under stress. Frontiers in Plant Science, 6, 333. https://doi.
org/10.3389/fpls.2015.00333.
Shukla, G. C., Singh, J., & Barik, S., (2011). microRNAs: Processing, maturation, target
recognition and regulatory functions. Molecular and Cellular Pharmacology, 3(3), 83.
Si, J., Zhou, T., Bo, W., Xu, F., & Wu, R., (2014). Genome-wide analysis of salt-responsive
and novel microRNAs in Populus euphratica by deep sequencing. BMC Genetics, 15(S6),
1–11. https://doi.org/10.1186/1471-2156-15-S1-S6.
Singh, A., Roy, S., Singh, S., Das, S. S., Gautam, V., Yadav, S., Kumar, A., Samantha, S., &
Sarkar, A. K., (2017). Phytohormonal crosstalk modulates the expression of miR166/165s,
target class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana.
Sci Rep., 7(1), 3408. https://doi.org/10.1038/s41598-017-03632-w.
Song, J. B., Gao, S., Sun, D., Li, H., Shu, X. X., & Yang, Z. M., (2013). miR394 and LCR
are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent
manner. BMC Plant Biology, 13(1), 1–16. https://doi.org/10.1186/1471-2229-13-210.
Sun, G., (2012). microRNAs and their diverse functions in plants. Plant Molecular Biology,
80(1), 17–36. https://doi.org/10.1007/s11103-011-9817-6.